Bayesian hierarchical graph-structured model for pathway analysis using gene expression data.

نویسندگان

  • Hui Zhou
  • Tian Zheng
چکیده

In genomic analysis, there is growing interest in network structures that represent biochemistry interactions. Graph structured or constrained inference takes advantage of a known relational structure among variables to introduce smoothness and reduce complexity in modeling, especially for high-dimensional genomic data. There has been a lot of interest in its application in model regularization and selection. However, prior knowledge on the graphical structure among the variables can be limited and partial. Empirical data may suggest variations and modifications to such a graph, which could lead to new and interesting biological findings. In this paper, we propose a Bayesian random graph-constrained model, rGrace, an extension from the Grace model, to combine a priori network information with empirical evidence, for applications such as pathway analysis. Using both simulations and real data examples, we show that the new method, while leading to improved predictive performance, can identify discrepancy between data and a prior known graph structure and suggest modifications and updates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data

The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...

متن کامل

Analysis of Hierarchical Bayesian Models for Large Space Time Data of the Housing Prices in Tehran

Housing price data is correlated to their location in different neighborhoods and their correlation is type of spatial (location). The price of housing is varius in different months, so they also have a time correlation. Spatio-temporal models are used to analyze this type of the data. An important purpose of reviewing this type of the data is to fit a suitable model for the spatial-temporal an...

متن کامل

Inferring regulatory networks using a hierarchical Bayesian graphical Gaussian model

In this paper, we propose a new formalism based on graphical Gaussian model (GGM) to infer genetic regulatory networks. A hierarchical Bayesian prior for the precision matrix of the GGM is introduced to impose a bias toward sparse graph structure. We show that the MAP estimation of the undirected graph can be readily obtained by a variant of the well-known Lasso regression algorithm. Then we in...

متن کامل

Modification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis

Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...

متن کامل

Pathway-Structured Predictive Model for Cancer Survival Prediction: A Two-Stage Approach.

Heterogeneity in terms of tumor characteristics, prognosis, and survival among cancer patients has been a persistent problem for many decades. Currently, prognosis and outcome predictions are made based on clinical factors and/or by incorporating molecular profiling data. However, inaccurate prognosis and prediction may result by using only clinical or molecular information directly. One of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistical applications in genetics and molecular biology

دوره 12 3  شماره 

صفحات  -

تاریخ انتشار 2013